Username:
Password:
Register
Reset password

Model repository

Models

Navigation
Below is displayed the model view of the selected project. Model view is shown in the form of the model overview page for the currently selected model. The central feature of the model view is the model scheme that shows individual model components of selected model. The navigation panel on the left allows you to browse the biological structure of the model. Manipulation with the navigation panel is realized by unfolding the items in the navigation tree and clicking on a requested system level.

Annotations Tab
All the annotation terms relevant for the currently focused level of the project are displayed on the Annotation Tab below the scheme. Individual annotation data can be unfolded by clicking on the requested annotation item header.

Components Tab
The Components Tab displays all the model species (state variables). More information for particular components are accessible after clicking on the requested component header.

Reactions Tab
Reactions Tab contains information regarding the modeled reactions. After clicking on the particular reaction header, the reacting components and relevant kinetic parameters are displayed.

Parameters Tab
All quantitative parameters are managed under Parameters Tab. Constants are separated from assigned quantities.

Simulation Tab
Simulation and SBML export are available by clicking on appropriate buttons at the bottom of the tab. All relevant settings of initial conditions, parameters, options and datasets are listed in respective folders.

Analysis Tab
Conservation analysis, modes analysis and matrix analysis are available by clicking on appropriate buttons.

Experiments Tab
Experiments tab contains list of all experiments related to selected model.

E-cyano team 2017, clock & C-N metabolism

Integrated model made by connecting the Miyoshi model and the Grimaud model.

The Grimaud model describes carbon-nitrogen metabolism. An important role in the model is held by nitrogenase, an enzyme responsible for catalysing nitrogen fixation. Nitrogenase activity is in the Grimaud model represented by a simple condition that keeps its activity turned on during a specific time period while turning it off for the rest of the day. In the real world, this condition is probably affected by the circadian clock mechanism as it has been shown that almost all genes in cyanobacteria are regulated by the circadian clock.Therefore, in the integrated model of circadian clock and carbon-nitrogen metabolism, nitrogenase activity si modelled by the circadian clock from the Miyoshi model. This connection if backed up by results showing correlation between concentration of KaiB4 in the Miyoshi model and nitrogenase activity indirectly though concentration of dissolved O2.

model: e-cyano team 2017, clock & C-N metabolism

Šalagovič, Jakub. Computational analysis and model integration of biorhythmic systems. Brno, 2017. Master's thesis. Masaryk University, Faculty of Informatics. Thesis supervisor David Šafránek.


publication: Šalagovič 2017
Contains:
Initial expression: 1
Simulation type: fixed
Initial expression: 340.8
Simulation type: reaction
Initial expression: 921.3
Simulation type: reaction
Initial expression: 1916.4
Simulation type: reaction
Initial expression: 1118.2
Simulation type: reaction
Initial expression: 119.3
Simulation type: reaction
Initial expression: 3274
Simulation type: reaction
Initial expression: 0.25
Simulation type: reaction
Initial expression: 183.2
Simulation type: reaction
Initial expression: 10.5
Simulation type: reaction
Initial expression: 2.9
Simulation type: reaction
Initial expression: 2.95
Simulation type: reaction
Initial expression: 33.1
Simulation type: reaction
Initial expression: 100
Simulation type: reaction
Initial expression: 650
Simulation type: reaction
Initial expression: 100
Simulation type: reaction
Initial expression: 0
Simulation type: reaction
Initial expression: Cf*alpha3
Simulation type: assignment
Initial expression: Cf+Cr+Cnit
Simulation type: assignment
Initial expression: Nf+Nr
Simulation type: assignment
Initial expression: 0
Simulation type: reaction
Initial expression: 1042.7
Simulation type: reaction
Equation: -> Cf
Modifiers: Cr, Cnit, Nr, Nf
Function: Cf input (Grimaud) (irreversible)
Reaction rate: r3*Cr*Nr/Nf+r7*Cnit
Kinetic rate constant Value
r3 0.025
r7 0.83
Equation: Cf ->
Function: Cf output (Grimaud) (irreversible)
Reaction rate: (r4*phi+D_)*Cf
Kinetic rate constant Value
r4 0.00093
D_ 0.0083
phi KaiB4/cs
Equation: -> Cnit
Modifiers: Cf
Function: Cnit input (Grimaud) (irreversible)
Reaction rate: r4*phi*Cf
Kinetic rate constant Value
r4 0.00093
phi KaiB4/cs
Equation: Cnit ->
Function: Cnit output (Grimaud) (irreversible)
Reaction rate: (r7 + D_)*Cnit
Kinetic rate constant Value
r7 0.83
D_ 0.0083
Equation: -> Cr
Modifiers: Cf
Function: Cr input (Grimaud) (irreversible)
Reaction rate: r2*(Ir/(Ir+Kl+I_*I_/Kil))*Cf
Kinetic rate constant Value
r2 0.275
Ir 130*exp(1)^(-1*((((t_+12) % 24)-12)^2)/(2*2^2))/3
Kil 4500
Kl 55.5
I_ 130/3/3
Equation: Cr ->
Modifiers: Nr, Nf, Cnit, Cf
Function: Cr output (Grimaud) (irreversible)
Reaction rate: ((r3+r3*gamma3)*Nr/Nf + r5 + D_)*Cr + alpha1*r1*Cnit + lambda5*(r2*(Ir/(Ir+Kl+I_*I_/Kil))*Cf)/Cf*Cnit
Kinetic rate constant Value
r3 0.025
gamma3 0.4
r5 0.027
D_ 0.0083
r1 14.5
alpha1 1.9
lambda5 5200
r2 0.275
I_ 130/3/3
Kil 4500
Kl 55.5
Ir 130*exp(1)^(-1*((((t_+12) % 24)-12)^2)/(2*2^2))/3
Equation: KaiA2B4 -> KaiA2
Function: Mass Action (irreversible)
Reaction rate: k12*KaiA2B4
Kinetic rate constant Value
k12 0.08788
Equation: KaiB4 + KaiA2 -> KaiA2B4
Function: Mass action (two substrates) (reversible)
Reaction rate: k11*theta1*KaiB4*KaiA2
Kinetic rate constant Value
theta1 1
k11 0.0008756
Equation: KaiA2 -> KaiA
Function: Mass Action (irreversible)
Reaction rate: k7*KaiA2
Kinetic rate constant Value
k7 0.162
Equation: KaiA -> KaiA2
Function: Mass Action 2nd order (irreversible)
Reaction rate: k8*KaiA*KaiA
Kinetic rate constant Value
k8 0.268
Equation: KaiA ->
Function: light-dependend Mass Action (irreversible)
Reaction rate: kpdeg1*KaiA*L_
Kinetic rate constant Value
kpdeg1 0.008
L_ ceil(Ir/100--0.0005)
Equation: -> KaiA
Modifiers: kaiA_mRNA
Function: Light dependend inflow (irreversible)
Reaction rate: ktl1*L_*kaiA_mRNA
Kinetic rate constant Value
ktl1 0.008239
L_ ceil(Ir/100--0.0005)
Equation: kaiA_mRNA ->
Function: Mass Action (irreversible)
Reaction rate: kmdeg1*kaiA_mRNA
Kinetic rate constant Value
kmdeg1 0.133
Equation: -> KaiB
Modifiers: kaiBC_mRNA
Function: Light dependend inflow (irreversible)
Reaction rate: ktl2*L_*kaiBC_mRNA
Kinetic rate constant Value
ktl2 170.1
L_ ceil(Ir/100--0.0005)
Equation: KaiB ->
Function: light-dependend Mass Action (irreversible)
Reaction rate: kpdeg2*KaiB*L_
Kinetic rate constant Value
kpdeg2 0.49
L_ ceil(Ir/100--0.0005)
Equation: KaiB4i -> KaiB4
Modifiers: CPKaiC6
Function: Michaelis-Menten irreversible (irreversible)
Reaction rate: (kcat_b2*CPKaiC6*KaiB4i)/(Km_b2 + KaiB4i)
Kinetic rate constant Value
kcat_b2 0.346
Km_b2 66.75
Equation: KaiB4 -> KaiB4i
Modifiers: PPKaiC6
Function: Michaelis-Menten irreversible (irreversible)
Reaction rate: (kcat_b1*PPKaiC6*KaiB4)/(Km_b1 + KaiB4)
Kinetic rate constant Value
kcat_b1 2.423
Km_b1 0.602
Equation: KaiB4 -> KaiB
Function: Mass Action (irreversible)
Reaction rate: k10*KaiB4
Kinetic rate constant Value
k10 0.0001615
Equation: KaiB -> KaiB4
Function: Mass Action 4th order (reversible)
Reaction rate: k9*KaiB*KaiB*KaiB*KaiB
Kinetic rate constant Value
k9 7.393e-17
Equation: KaiC6 -> PPKaiC6
Function: Mass Action (irreversible)
Reaction rate: k21*KaiC6
Kinetic rate constant Value
k21 1.079e-08
Equation: KaiC6 -> KaiC
Function: Mass Action (irreversible)
Reaction rate: k1*KaiC6
Kinetic rate constant Value
k1 1.615
Equation: KaiC -> KaiC6
Function: Mass Action 6th order (reversible)
Reaction rate: k2*KaiC*KaiC*KaiC*KaiC*KaiC*KaiC
Kinetic rate constant Value
k2 2.039e-16
Equation: KaiC6 -> PPKaiC6
Modifiers: KaiA2
Function: Michaelis-Menten irreversible (irreversible)
Reaction rate: (kcat1*KaiA2*KaiC6)/(Km1 + KaiC6)
Kinetic rate constant Value
kcat1 0.539
Km1 602
Equation: KaiC ->
Function: light-dependend Mass Action (irreversible)
Reaction rate: kpdeg3*KaiC*L_
Kinetic rate constant Value
kpdeg3 1.3
L_ ceil(Ir/100--0.0005)
Equation: -> Nr
Modifiers: Cnit
Function: Nr input (Grimaud) (irreversible)
Reaction rate: 2*r1*Cnit
Kinetic rate constant Value
r1 14.5
Equation: Nr ->
Modifiers: Cr, Cnit, Nf
Function: Nr ouutput (Grimaud) (irreversible)
Reaction rate: (alpha3*r3*Cr/Nf+lambda6*r1*Cnit/Nf + D_)*Nr
Kinetic rate constant Value
r1 14.5
r3 0.025
alpha3 0.155
lambda6 0.88
D_ 0.0083
Equation: -> t_
Function: Time flow (irreversible)
Reaction rate: theta1
Kinetic rate constant Value
theta1 1
Equation: CPKaiC6 -> PPKaiC6
Function: Mass Action (irreversible)
Reaction rate: k24*CPKaiC6
Kinetic rate constant Value
k24 1.079e-08
Equation: CPKaiC6 -> PPKaiC6
Modifiers: KaiA2B4
Function: Michaelis-Menten irreversible (irreversible)
Reaction rate: (kcat4*KaiA2B4*CPKaiC6)/(Km4 + CPKaiC6)
Kinetic rate constant Value
kcat4 0.89
Km4 0.602
Equation: CPKaiC6 -> PKaiC
Function: Mass Action (irreversible)
Reaction rate: k5*CPKaiC6
Kinetic rate constant Value
k5 0.162
Equation: PKaiC -> CPKaiC6
Function: Mass Action 6th order (reversible)
Reaction rate: k6*PKaiC*PKaiC*PKaiC*PKaiC*PKaiC*PKaiC
Kinetic rate constant Value
k6 1.019e-10
Equation: -> kaiA_mRNA
Modifiers: CPKaiC6, PPKaiC6
Function: Enzyme-modulated light-dependend transcription (irreversible)
Reaction rate: ka1*(kbts1*RNAP)/(1+kbts1*RNAP)*(CPKaiC6/PPKaiC6)*L_
Kinetic rate constant Value
ka1 10170000
kbts1 3.657e-12
RNAP 5000
L_ ceil(Ir/100--0.0005)
Equation: kaiBC_mRNA ->
Function: Mass Action (irreversible)
Reaction rate: kmdeg2*kaiBC_mRNA
Kinetic rate constant Value
kmdeg2 0.178
Equation: -> kaiBC_mRNA
Modifiers: CPKaiC6, PPKaiC6
Function: Enzyme-modulated light-dependend transcription (irreversible)
Reaction rate: ka2*(kbts2*RNAP)/(1+kbts2*RNAP)*(CPKaiC6/PPKaiC6)*L_
Kinetic rate constant Value
ka2 64580000
kbts2 1e-12
RNAP 5000
L_ ceil(Ir/100--0.0005)
Equation: PPKaiC6 -> KaiC6
Function: Mass Action (irreversible)
Reaction rate: k22*PPKaiC6
Kinetic rate constant Value
k22 1.079e-05
Equation: PPKaiC6 -> CPKaiC6
Function: Mass Action (irreversible)
Reaction rate: k23*PPKaiC6
Kinetic rate constant Value
k23 1.079e-06
Equation: PPKaiC6 -> KaiC6
Modifiers: KaiA2B4
Function: Michaelis-Menten irreversible (irreversible)
Reaction rate: (kcat2*KaiA2B4*PPKaiC6)/(Km2 + PPKaiC6)
Kinetic rate constant Value
kcat2 0.539
Km2 602
Equation: PPKaiC6 -> KaiC
Function: Mass Action (irreversible)
Reaction rate: k3*PPKaiC6
Kinetic rate constant Value
k3 0.0001615
Equation: KaiC + PKaiC -> PPKaiC6
Function: Specific hexamer formation (Myioshi) (reversible)
Reaction rate: k4*KaiC*KaiC*KaiC*PKaiC*PKaiC*PKaiC
Kinetic rate constant Value
k4 1.019e-14
Equation: PPKaiC6 -> CPKaiC6
Modifiers: KaiA2
Function: Michaelis-Menten irreversible (irreversible)
Reaction rate: (kcat3*KaiA2*PPKaiC6)/(Km3 + PPKaiC6)
Kinetic rate constant Value
kcat3 1.079
Km3 0.602
Equation: PKaiC ->
Function: light-dependend Mass Action (irreversible)
Reaction rate: kpdeg4*PKaiC*L_
Kinetic rate constant Value
kpdeg4 0.2
L_ ceil(Ir/100--0.0005)

Constant quantities

Initial expression: 14.5
Simulation type: fixed
Initial expression: 0.275
Simulation type: fixed
Initial expression: 0.025
Simulation type: fixed
Initial expression: 0.00093
Simulation type: fixed
Initial expression: 0.027
Simulation type: fixed
Initial expression: 0.83
Simulation type: fixed
Initial expression: 1.9
Simulation type: fixed
Initial expression: 0.155
Simulation type: fixed
Initial expression: 0.4
Simulation type: fixed
Initial expression: 5200
Simulation type: fixed
Initial expression: 0.88
Simulation type: fixed
Initial expression: 0.0083
Simulation type: fixed
Initial expression: 55.5
Simulation type: fixed
Initial expression: 4500
Simulation type: fixed
Initial expression: 0.27
Simulation type: fixed
Initial expression: 0.08
Simulation type: fixed
Initial expression: 0
Simulation type: fixed
Initial expression: 1
Simulation type: fixed
Initial expression: 7
Simulation type: fixed
Initial expression: 24
Simulation type: fixed
Initial expression: 0.0001
Simulation type: fixed
Initial expression: 12
Simulation type: fixed
Initial expression: 1.019e-14
Simulation type: fixed
Initial expression: 0.0001615
Simulation type: fixed
Initial expression: 2.039e-16
Simulation type: fixed
Initial expression: 0.162
Simulation type: fixed
Initial expression: 1.615
Simulation type: fixed
Initial expression: 1.019e-10
Simulation type: fixed
Initial expression: 0.162
Simulation type: fixed
Initial expression: 0.268
Simulation type: fixed
Initial expression: 7.393e-17
Simulation type: fixed
Initial expression: 0.0001615
Simulation type: fixed
Initial expression: 0.0008756
Simulation type: fixed
Initial expression: 0.08788
Simulation type: fixed
Initial expression: 1.079e-08
Simulation type: fixed
Initial expression: 1.079e-05
Simulation type: fixed
Initial expression: 1.079e-06
Simulation type: fixed
Initial expression: 1.079e-08
Simulation type: fixed
Initial expression: 10170000
Simulation type: fixed
Initial expression: 64580000
Simulation type: fixed
Initial expression: 0.539
Simulation type: fixed
Initial expression: 0.539
Simulation type: fixed
Initial expression: 1.079
Simulation type: fixed
Initial expression: 0.89
Simulation type: fixed
Initial expression: 2.423
Simulation type: fixed
Initial expression: 0.346
Simulation type: fixed
Initial expression: 0.133
Simulation type: fixed
Initial expression: 0.178
Simulation type: fixed
Initial expression: 0.008
Simulation type: fixed
Initial expression: 0.49
Simulation type: fixed
Initial expression: 1.3
Simulation type: fixed
Initial expression: 0.2
Simulation type: fixed
Initial expression: 0.008239
Simulation type: fixed
Initial expression: 170.1
Simulation type: fixed
Initial expression: 3.657e-12
Simulation type: fixed
Initial expression: 1e-12
Simulation type: fixed
Initial expression: 602
Simulation type: fixed
Initial expression: 602
Simulation type: fixed
Initial expression: 0.602
Simulation type: fixed
Initial expression: 0.602
Simulation type: fixed
Initial expression: 0.602
Simulation type: fixed
Initial expression: 66.75
Simulation type: fixed
Initial expression: 5000
Simulation type: fixed
Initial expression: 0.9
Simulation type: fixed
Initial expression: 0.25
Simulation type: fixed
Initial expression: 0.2
Simulation type: fixed
Initial expression: 2000
Simulation type: fixed
Initial expression: 1500
Simulation type: fixed

Assigned quantities

Initial expression: KaiC/(KaiC+PKaiC)
Simulation type: assignment
Initial expression: PKaiC/(KaiC+PKaiC)
Simulation type: assignment
Initial expression: (t_+phase) % Tc
Simulation type: assignment
Initial expression: 130*exp(1)^(-1*((((t_+12) % 24)-12)^2)/(2*2^2))/3
Simulation type: assignment
Initial expression: 130/3/3
Simulation type: assignment
Initial expression: KaiB4/cs
Simulation type: assignment
Initial expression: ceil(Ir/100--0.0005)
Simulation type: assignment
Name Value
cytosol 1
KaiC6 340.8
PPKaiC6 921.3
CPKaiC6 1916.4
KaiC 1118.2
PKaiC 119.3
KaiB4i 3274
KaiB4 0.25
KaiA2 183.2
KaiA 10.5
kaiA_mRNA 2.9
kaiBC_mRNA 2.95
KaiA2B4 33.1
Cr 100
Cf 650
Nr 100
Cnit 0
Nf Cf*alpha3
Ctot Cf+Cr+Cnit
Ntot Nf+Nr
t_ 0
KaiB 1042.7

Constant quantities

Name Value
r1 14.5
r2 0.275
r3 0.025
r4 0.00093
r5 0.027
r7 0.83
alpha1 1.9
alpha3 0.155
gamma3 0.4
lambda5 5200
lambda6 0.88
D_ 0.0083
Kl 55.5
Kil 4500
k_ 0.27
Kb 0.08
theta0 0
theta1 1
Tp 7
Tc 24
T_ 0.0001
phase 12
k4 1.019e-14
k3 0.0001615
k2 2.039e-16
k5 0.162
k1 1.615
k6 1.019e-10
k7 0.162
k8 0.268
k9 7.393e-17
k10 0.0001615
k11 0.0008756
k12 0.08788
k21 1.079e-08
k22 1.079e-05
k23 1.079e-06
k24 1.079e-08
ka1 10170000
ka2 64580000
kcat1 0.539
kcat2 0.539
kcat3 1.079
kcat4 0.89
kcat_b1 2.423
kcat_b2 0.346
kmdeg1 0.133
kmdeg2 0.178
kpdeg1 0.008
kpdeg2 0.49
kpdeg3 1.3
kpdeg4 0.2
ktl1 0.008239
ktl2 170.1
kbts1 3.657e-12
kbts2 1e-12
Km1 602
Km2 602
Km3 0.602
Km4 0.602
Km_b1 0.602
Km_b2 66.75
RNAP 5000
c1 0.9
c2 0.25
c3 0.2
c4 2000
cs 1500

Assigned quantities

Name Value
KaiC_rel KaiC/(KaiC+PKaiC)
PKaiC_rel PKaiC/(KaiC+PKaiC)
tph (t_+phase) % Tc
Ir 130*exp(1)^(-1*((((t_+12) % 24)-12)^2)/(2*2^2))/3
I_ 130/3/3
phi KaiB4/cs
L_ ceil(Ir/100--0.0005)
Name Value
Simulation Start 0  
Simulation End 150  
Number of Steps 1500  

Simulate   Export sbml

Conservation analysis

Conservation

Modes analysis

Modes

Matrix analysis

Matrix

Please use the following reference to cite this web site:
M. Trojak, D. Safranek, J. Hrabec, J. Salagovic, F. Romanovska, J. Cerveny: E-Cyanobacterium.org: A Web-Based Platform for Systems Biology of Cyanobacteria. In: Computational Methods in Systems Biology, CMSB 2016, Vol. 9859 of LNCS, pp. 316-322. Springer, 2016. DOI