E-cyanobacterium.org: Tutorial

Introduction

Cyanobacterium is one of the simplest organisms that developed oxygenic photosynthesis and helped to establish conditions suitable for life as we know it nowadays. It exists mostly in unicellular or filamentous organization without nuclei or an internal membrane system and provides excellent minimal photosynthetic system for research. Even though compared to much more complex photosynthetic organisms like algae and plants, knowledge about processes and functions involved in cyanobacteria metabolic and genetic regulation is still far beyond our complete understanding [1, 2].

There are many standard biological techniques available for Synthetic Biology applications in *Escherichia coli* that can be also adopted for cyanobacteria research. To facilitate such effort we developed web-based platform for public sharing, annotation, analysis, and visualization of dynamical models and wet-lab experiments.

As a case study used within this tutorial we have chosen biological processes of extreme evolutionary importance for almost any living organism on Earth – circadian rhythm. For simple photosynthetic organisms such as cyanobacteria this process plays a significant role in regulation of many biological processes, e.g., antagonistic processes of photosynthesis and nitrogen fixation. The molecular mechanism of the circadian oscillator in cyanobacteria was discovered in late ’90s and consists of three components (kinases *KaiA, KaiB, KaiC*) creating a post-translational oscillator (together with ATP) [3].

The platform (E-cyanobacterium.org) harbors repositories for cyanobacteria related models and experiments. Model repository allows online analyses and simulation of mathematical models while experiments repository enables to store and share experimental data.

1. Homepage and navigation

The home page contains description of platform’s purpose and explanation of its three major parts – Biochemical space, Model repository, and Experiments repository (Fig. 1.1). Login and registration panel can be found in the top right corner (Fig. 1.2).

![Fig. 1 – homepage of e-cyanobacterium.org](image-url)
There are three main navigation elements:

- Main menu (Fig. 2.1): main navigation to corresponding pages,
- Navigation panel (Fig. 2.2): navigation in Biochemical space or in Model repository,
- Information panel (Fig. 2.3): divides information about selected item into tabs.

You can view help tooltip by clicking on question mark in blue circle in the top right corner (Fig. 2.4).

2. Registration

Registration is necessary for access to full features of the website. It allows a registered user to customize parameters in models, import and edit own experiments and contact support team if necessary. The login panel can be found in the top right corner of the header (Fig. 3.1). Below is Registration link (Fig. 3.2) which redirects you to the registration page. Username, password, and email address fields are compulsory, other fields are optional. Immediately after registration the user can login and use website as a registered user. In case the password is forgotten, there is possibility to restore the password (Fig. 3.3).
After registration, e-cyanobacterium.org platform is fully operational.

3. Biochemical Space

Section Biochemical space [4] is located in the Main menu (Fig. 4.1). Navigation is possible either through Navigation panel (left column) named Processes or via interactive schemes.

We demonstrate the usage on the example of the cyanobacteria circadian clock mechanism. As it has been mentioned before, there are two options how to do it. First one is through the selection tree structure on the left – Cyanobacterium in its environment ➔ Cellular processes ➔ Clock metabolism (Fig. 4.2). After clicking on the link, the picture displays simplified scheme of the circadian clock in cyanobacteria. Another way to get there is by clicking on the particular element in the illustration (Fig. 4.3, Fig. 5.1). Each entity is supplied with a description when moving the cursor over it.
There is a search field in the top right corner above the scheme (Fig. 5.2). When a term is inserted, the corresponding element is highlighted. It is helpful especially in complex schemes. By clicking on an entity, the user will be redirected to detailed description of the entity.
There are three tabs beneath the picture – Models, Entities and Rules (Fig. 6). The Models tab (Fig. 6.1) contains information about models related to process selected in the Navigation panel. It is possible to get into the particular model by expanding the corresponding row and clicking on the Detail button. In the Entities tab (Fig. 6.2), there are listed entities occurring in the selected process. There is detailed annotation when expanded. The Rules tab (Fig. 6.3) contains categories of rules as displayed in Fig. 6. When expanded, there is a list of rules. We can display short description and rule (written in Biochemical Space Language) by clicking on the exact rule (Fig. 6.4).

4. Models

Except the method described above, another way to get to models is by clicking on the Model repository tab in the Main menu (Fig. 7.1).

![Model repository](image)

Fig. 7 – Model repository, Model Miyoshi et al. 2007

Suppose we would like to see model Miyoshi et al. 2007 [5]. We can go to the page of this model by clicking on Miyoshi et al. 2007 in the navigation on the left (Fig. 7.2). Corresponding model unfolds by clicking on the plus sign in the Navigation panel and we can explore entities of selected model.

There are seven tabs beneath the picture in the Information panel (Fig. 7):

- The Annotation tab which contains annotation for the model and link to the respective publication.
- The Components tab where are listed all entities of the selected model. By clicking on the Detail link, details of the entity in Biochemical Space will be displayed.
- The Reactions tab contains all mathematical properties of reactions of the selected model. By clicking on the Detail link, details of the appropriate rule in Biochemical Space will be displayed.
- The Parameters tab includes Constant and Assigned quantities.
- The Simulation tab allows a registered user to change parameters of the simulation (Fig. 8.1), save them as a dataset (Fig. 8.2) and use their own datasets or datasets
created by someone else. To run simulation and show results in the chart you need to click on Simulate button (Fig. 8.3). There are several options what to do with the chart, all of them are described in the help (Fig. 9.1). It is also possible to download the simulation results in several formats (Fig. 9.2). In our example we chose the graphset of protein complexes KaiB4 and light adapted dataset that represents cyanobacteria in environment with diurnal rhythms of light (Fig. 9.3). Simulation tab also contains possibility to export model to SBML [6] (Fig. 8.4). Platform offers several simulation engines\(^1\) which can be chosen exclusively by model administrator

- The Analysis tab is dedicated to people who are interested in models. It contains static analysis for finding out the properties of the model, specifically mass conservation, flux modes and incidence matrix. It is possible to export the results of all of these analyses to a file in SBRML [7] format.

- The Experiment tab shows experiments associated with the model. By clicking on the Experiment detail, the link to the corresponding experiment is shown.

![Fig. 8 – model repository, simulation, datasets and export to SBML](image)

\(^1\) For example Octave [https://www.gnu.org/software/octave/] or COPASI http://copasi.org/
5. Experiments

There are two options to enter Experiments repository. First is the one mentioned before – Experiments tab in Model repository refers to all experiments related to the selected model. The second way is by clicking on Experiments repository in Main menu (Fig. 10.1).
This page allows the user to adjust the view, filter and order experiments and also select a desired one (Fig. 10.2). Choosing Light/Dark 16:8h Entrainment (Fig. 10.3) we proceed to a page with experiment details.

Information in tabs Series detail and Experiment detail are self-explanatory.

Some experiments are measured on several devices simultaneously. Therefore we need to associate these measurements. For that reason there is a possibility of having parent-child relation between experiments as shown on Fig. 10.4 and Fig. 11. Data dCO2 and Data dO2, measured by devices of different types, are child experiments of Light/Dark 16:8h Entrainment measured by Photobioreactor.

In tab Variables all variables of selected experiment are shown. Data tab contains two possible options – data export and show chart. The data can be exported in different file formats (Fig. 12.2) and as a whole, parent or child experiments (Fig. 12.1). Clicking on Show chart all variables are plotted in interactive chart. There are several possibilities what to do with the chart, all of them are described in the help (Fig. 12.3). Selecting desired variables and fitting to scale are the essential ones – in the Fig. 12 we have hidden all parameters except O2 resp and fitted the view to scale.

Tab Annotations contains all annotations related to selected experiment.

As long as it is possible to view data for both models and experiments we can compare these outputs. Comparing the chart of simulation of model Miyoshi et al. 2007 mentioned earlier to experimental data we can monitor relation between components of model and data measured in experiments. The last four periods of values of O2 resp from experiments (Fig. 12) and KaiBi variable in model Miyoshi et al. 2007 (Fig. 13) really show some qualitative similarity.
Fig. 12 – experiments repository, chart of measured data

Fig. 13 – model Miyoshi et al. 2007, chart of KaiB4 complexes
In case of additional question see FAQ in Support tab or use contact form which can be found in Contact tab, both in Main menu.

e-cyanobacterium.org team

References

